Inhalt: Signalverarbeitung und maschinelles Lernen für das automatisierte Fahren Dieses Buch behandelt Methoden der Signalverarbeitung und des maschinellen Lernens, die in der integralen Fahrzeugsicherheit und für das automatisierte Fahren benötigt werden. Es vermittelt die mathematischen Grundlagen, um eigene Algorithmen für automatisierte Eingriffe in die Fahrzeugführung zu entwerfen und zu implementieren. Das Buch wendet sich an Ingenieure/-innen aus dem Bereich Automotive sowie an Studierende und Promovierende der Ingenieurwissenschaften. Folgende Themen werden behandelt:- Maschinelles Lernen (inklusive Deep Learning): Grundlagen und Anwendungen für das automatisierte Fahren, Convolutional Neural Networks, Random Forest, Autoencoder- Statistische Signalverarbeitung: Grundlagen der statistischen Filterung sowie Tracking von Objekten in der Fahrzeugumgebung, Kalman-Filter, Fusion von Sensordaten- Fahrzeugmodelle und Trajektorien: Fahrdynamikmodelle für die aktive Fahrzeugsicherheit und das automatisierte Fahren, Trajektorienplanung und Trajektorienfolgeregler, Kollisionsmodelle für die passive Fahrzeugsicherheit- Zeit- und Frequenzdarstellung von Signalen (z. B. Filterung von Beschleunigungssignalen in Airbag-Steuergeräten)- Mathematische Grundlagen für den Entwurf von Algorithmen: Lineare Algebra, Optimierung, Wahrscheinlichkeitstheorie und Lineare Systeme Die einzelnen Schwerpunkte werden durch Übungsaufgaben mit Musterlösungen veranschaulicht. Für Übungsaufgaben, bei denen es erforderlich ist, werden Matlab-Skripte zur Verfügung gestellt. Umfang: 448 S. ISBN: 978-3-446-46804-7
Inhalt: - Von der logistischen Regression über Feed-Forward-Netze zu Encoder-Decoder-Modellen- Leicht verständlich mit textbasierten Erklärungen und wenigen Formeln- Mit Fokus auf der Verarbeitung deutschsprachiger Texte- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Notebooks auf GitHub- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches Das Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein. Im Fokus stehen insbesondere folgende Verfahren:? Vektorisierung von Wörtern mit Word Embedding.? Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen.? Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen.? Arbeit mit der Transformers-Bibliothek und Hugging Face. Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen. Umfang: 256 S. ISBN: 978-3-446-47390-4
Inhalt: - Von der logistischen Regression über Feed-Forward-Netze zu Encoder-Decoder-Modellen- Leicht verständlich mit textbasierten Erklärungen und wenigen Formeln- Mit Fokus auf der Verarbeitung deutschsprachiger Texte- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Notebooks auf GitHub- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches Das Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein. Im Fokus stehen insbesondere folgende Verfahren:? Vektorisierung von Wörtern mit Word Embedding.? Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen.? Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen.? Arbeit mit der Transformers-Bibliothek und Hugging Face. Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen. Umfang: 256 S. ISBN: 978-3-446-47409-3
Inhalt: Data Science, Big Data, and Artificial Intelligence are currently some of the most talked-about concepts in industry, government, and society, and yet also the most misunderstood. This book will clarify these concepts and provide you with practical knowledge to apply them. Featuring: - A comprehensive overview of the various fields of application of data science- Case studies from practice to make the described concepts tangible- Practical examples to help you carry out simple data analysis projects- BONUS in print edition: E-Book inside The book approaches the topic of data science from several sides. Crucially, it will show you how to build data platforms and apply data science tools and methods. Along the way, it will help you understand - and explain to various stakeholders - how to generate value from these techniques, such as applying data science to help organizations make faster decisions, reduce costs, and open up new markets. Furthermore, it will bring fundamental concepts related to data science to life, including statistics, mathematics, and legal considerations. Finally, the book outlines practical case studies that illustrate how knowledge generated from data is changing various industries over the long term. Contains these current issues: - Mathematics basics: Mathematics for Machine Learning to help you understand and utilize various ML algorithms.- Machine Learning: From statistical to neural and from Transformers and GPT-3 to AutoML, we introduce common frameworks for applying ML in practice- Natural Language Processing: Tools and techniques for gaining insights from text data and developing language technologies- Computer vision: How can we gain insights from images and videos with data science?- Modeling and Simulation: Model the behavior of complex systems, such as the spread of COVID-19, and do a What-If analysis covering different scenarios.- ML and AI in production: How to turn experimentation into a working data science product?- Presenting your results: Essential presentation techniques for data scientists Umfang: 573 S. ISBN: 978-1-56990-887-7
Inhalt: ?Umfassender Überblick über die verschiedenen Anwendungsfelder von Data Science?Fallbeispiele aus der Praxis machen die beschriebenen Konzepte greifbar ?Vermittelt das notwendige Wissen, um einfache Datenanalyse-Projekte durchzuführen Dieses Buch bietet Ihnen einen Überblick über die verschiedenen Aspekte von Data Science und beschreibt, welchen Wert Sie in einer Big Data-Umgebung aus Daten generieren. So können z. B. Unternehmen auf Basis analysierter Daten schneller Entscheidungen treffen, Kosten reduzieren oder neue Märkte erschließen. Das Buch nähert sich dem Thema Data Science von mehreren Seiten. Zum einen zeigt es, wie Sie Big Data-Plattformen aufbauen und einzelne Tools auf Daten anwenden. Darüber hinaus werden statistisch-mathematische sowie rechtliche Themen angeschnitten. Abgerundet wird das Buch mit Fallbeispielen aus der Praxis, die veranschaulichen wie aus Daten generiertes Wissen unterschiedliche Industrien nachhaltig verändert. Nach der Lektüre des Buches wird der Leser in der Lage sein, einfache Datenanalyse-Projekte durchzuführen. EXTRA: E-Book inside. Systemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions. Umfang: 288 S. ISBN: 978-3-446-46040-9
Programm Findus Internet-OPAC findus.pl V20.241/8 auf Server windhund2.findus-internet-opac.de,
letztes Datenbankupdate: 04.11.2024, 16:13 Uhr. 787 Zugriffe im November 2024. Insgesamt 544.230 Zugriffe seit Juli 2008
Mobil - Impressum - Datenschutz - CO2-Neutral